The Transannular Bond in [5,6]- $\mathrm{NCO}_{2} \mathrm{R}$-bridged Monoadducts of [60]Fullerene is Open

Georg Schick, Thomas Grösser and Andreas Hirsch*

Institut für Organische Chemie, Richard-Willstätter-Allee 2, 76131 Karlsruhe, Germany
${ }^{13} \mathrm{C}$ NMR investigations of [5,6]- $\mathrm{NCO}_{2} \mathrm{R}$ - and [5,6]- ${ }^{15} \mathrm{NCO}_{2} \mathrm{R}$-bridged monoadducts of [60]fullerene obtained by the thermal reaction of [60]fullerene with azidoformates show that the transannular bond is open.

It is well established that monomethano- or monoimino[60]fullerenes are either [6,6]-bridged compounds with a closed or [5,6]-bridged compounds with an open transannular bond. ${ }^{1-12}$ In these isomers the introduction of energetically unfavourable double bonds in five-membered rings is avoided, whereas hypothetical open [6,6]-bridged and closed [5,6]-bridged isomers require the introduction of three and two double bonds in five-membered rings respectively. However, in contrast to the expected generalisation of this principle, the isolation of closed [5,6]-iminobridged fullerenes has been claimed recently. ${ }^{13}$ Here, we report independent investigations on these compounds, which prove that the transannular [5,6]-bonds are open.

Closed [6,6]-imino-bridged monoadducts of [60]fullerene can be obtained by $[2+1]$ cycloadditions of nitrenes, which were generated in situ by α-elimination of O-4-nitrophenyl-

$1 a, b$

$2 a, b$
aR $=\mathrm{CO}_{2} \mathrm{Et}$
b $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$

Fig. $1{ }^{13} \mathrm{C}$ NMR spectra ($62.9 \mathrm{MHz}, \mathrm{CS}_{2}-10 \% \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of (a) 2b, (b) $\mathbf{2 a}$ with the comparison of the 136-134 ppm regions of (c) 2a and (d) ${ }^{15} \mathrm{~N}-\mathbf{2 a}$ showing the ${ }^{1} J_{\mathrm{C}, \mathrm{N}}$ coupling and the two ${ }^{2} J_{\mathrm{C}, \mathrm{N}}$ couplings of the ${ }^{15} \mathrm{~N}$ iminobridge with the fullerene $\mathrm{sp}^{2}-\mathrm{C}$-atoms $\mathrm{C}-1, \mathrm{C}-6$ and $\mathrm{C}-2, \mathrm{C}-5$ and $\mathrm{C}-7$, C-9 respectively
sulfonylalkylhydroxannic acids ${ }^{7}$ \{side products\}, by thermal N_{2}-elimination of azidoformates ${ }^{6}\{[5,6]$ side products $\}$ or photochemically from azidoformates ${ }^{11}$ \{no $[5,6]$ side products $\}$, whereas the open [5,6]-iminobridged isomers are accessible by $[3+2]$ cycloadditions of alkyl azides followed by $\mathrm{N}_{2^{-}}$ extrusion from the triazoline intermediates ${ }^{4,5,8,9,10,12}\{[6,6]$ side products $\}$. The $[5,6]$ side products obtained by the thermal reaction of the azidoformates $\mathrm{N}_{3} \mathrm{CO}_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{Et}\right.$, Bu^{t} supermesityl) have been assigned as the first examples for closed [5,6]-bridged fullerene adducts. ${ }^{13}$ This interpretation was based on the findings that: (i) these compounds are C_{s}-symmetric (${ }^{13} \mathrm{C}$ NMR); (ii) no 420 nm bands in the UV/VIS-spectra characteristic for [6,6]-isomers ${ }^{5}$ are present and (iii) signals between $\delta 80$ and 105 have been observed in ${ }^{13} \mathrm{C}$ NMR spectra, which were attributed to sp^{3}-C-atoms of the fullerene core bound to the imino-bridge. With the exception of these signals the reported spectroscopic data are fully consistent with open [5,6]-bridged structures. ${ }^{4}$

When we allowed a boiling solution of [60]fullerene in 1,1,2,2-tetrachloroethane to react with 1 equiv. of $\mathrm{N}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (identical conditions to those used in ref. 13) we also obtained the $[6,6]$-isomer 1a as the major product (27%) and the [5,6]-isomer 2 a as the minor product (2%); however, $\mathbf{2 a}$ is the ring-open isomer. Compounds $\mathbf{1 b}$ and $\mathbf{2 b}$ are not easily accessible by this method since they readily undergo follow-up reactions to the NH-analogues. ${ }^{14}$ The spectroscopic properties \dagger of 2 a are the same as those reported for the [5,6]-adduct in ref. 13 , except that we do not see a signal at $\delta 80.4$ in the ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum. The only signals in the sp^{3}-region are due to the ethyl groups in 2a (Fig. 1). The comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of $2 \mathbf{2}$ with those of $100 \%{ }^{15} \mathrm{~N}$-labelled $\mathbf{2 a}$ proves unambiguously that the transannular [5,6]-bond is open (Fig. 1). The ${ }^{1} J_{\mathrm{C}, \mathrm{N}}$ coupling of 9.5 Hz at $\delta 134.10$ is due to the bridging nitrogen with the sp^{2}-C-atoms, $\mathrm{C}-1$ and $\mathrm{C}^{\prime}-6$. The doublets at $\delta 135.90$ and 134.43 are caused by ${ }^{2} J_{\mathrm{C}, \mathrm{N}}$ couplings with $\mathrm{C}-2, \mathrm{C}-5$ and C-7, C-9 respectively.

An important pathway leading to $2 \mathbf{a}$ should be $[3+2]$ cycloaddition of $\mathrm{N}_{3} \mathrm{CO}_{2} \mathrm{Et}$ and N_{2} extrusion of the initially formed triazolines. This mechanism is the major pathway for the reaction of [60]fullerene with alkyl azides. ${ }^{5}$ To prove this hypothesis we allowed [60]fullerene to react with 1 equiv. of $\mathrm{N}_{3} \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$ in a concentrated 1-chloronaphthalene solution at $60^{\circ} \mathrm{C}$, which are typical conditions for the formation of triazolines. ${ }^{5}$ Upon dilution of the reaction mixture with toluene to a tenfold volume and heating to $120^{\circ} \mathrm{C}$ compounds $\mathbf{1 b}$ and $\mathbf{2 b}$ are formed from the more polar triazoline intermediate (TLC control). The ratio of the yields of the [6,6]- and [5,6]-isomers is reversed $(3 \% \mathbf{1 b}, 16 \% \mathbf{2 b})$ compared to the direct thermal treatment of [60]fullerene with $\mathrm{N}_{3} \mathrm{CO}_{2} \mathrm{Et}$, where the $[2+1]$ cycloaddition of stabilised carbonyl nitrenes leading predominantly to $[6,6]$-adducts like $\mathbf{1}$ is the preferred process.
The spectroscopic properties \dagger of the open [5,6]-bridged $\mathbf{2 b}$ are comparable to those of $\mathbf{2 a}$ (Fig. 1). The only signals for $\mathrm{sp}^{3}-$ atoms detected by ${ }^{13} \mathrm{C}$ NMR spectroscopy are due to the quaternary $(\delta 82.63)$ and the primary ($\delta 27.95$) C-atoms of the tert-butyl groups, We have never found a [5,6]-iminobridged adduct with a closed transannular bond in any of our reaction products.

We thank the Hoechst AG and the Dr Otto Röhm Gedächtnisstiftung for financial support.

Received, 2nd August 1995; Com. 5/05158D

Footnote

\dagger Selected data for ${ }^{15} \mathrm{~N}-2 \mathrm{a}:{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CS}_{2}-10 \% \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 153.97$ (d, ${ }^{1} J_{\mathrm{C}, \mathrm{N}} 26.2 \mathrm{~Hz}$), 147.14, 145.27, 144.58, 144.21, 144.13, 143.97, 143.91, 143.88, 143.69, 143.34, 143.16, 142.90, 142.76, 142.68, 142.60, $142.49,141.50,141.18,139.53,138.98,138.30,138.20,137.41,137.06$, $135.90\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{N}} 1.0 \mathrm{~Hz}\right), 134.43\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{N}} 2.1 \mathrm{~Hz}\right), 134.10\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{N}} 9.5 \mathrm{~Hz}\right)$, $62.97,14.64 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CS}_{2}-10 \% \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 1.44(\mathrm{t}, J 7.1$ $\mathrm{Hz}), 4.43(\mathrm{q}, J 7.1 \mathrm{~Hz}) ; \lambda_{\max } / \mathrm{mm}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 260,329,428(\mathrm{sh}), 414(\mathrm{sh}), 502$, 600; FAB MS (m-nitrobenzyl alcohol, NBA) (M+) $m / z 808$. For 2b: ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CS}_{2}-10 \% \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 153.05,147.15,144.49$, $144.22,144.10,143.92,143.84,143.73,143.65,143.62,143.29,143.11$, $142.93,142.86,142.62,142.56,142.46,141.52,141.11,139.44,139.02$, $138.85,138.21,138.15,137.26,136.98,135.96,134.99,134.38,82.63$, 27.95; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CS}_{2}-10 \% \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 1.62(\mathrm{~s}) ; \lambda_{\text {max }} / \mathrm{nm}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 261,330,413(\mathrm{sh}), 429(\mathrm{sh}), 509,600(\mathrm{sh}) ;$ FBMS (NBA) (M+) $m / z 835$.

References

1 A. Hirsch, The Chemistry of the Fullerenes, Thieme, Stuttgart, New York, 1994.
2 M. Prato, V. Lucchini, M. Maggini, E. Stimpfl, G. Scorrano, M. Eiermann, T. Suzuki and F. Wudl, J. Am. Chem. Soc., 1993, 115, 8479.

3 F. Diederich, L. Isaacs and D. Philp, Chem. Soc. Rev., 1994, 243.

4 M. Prato, Q. Li, F. Wudl and V. Lucchini, J. Am. Chem. Soc., 1993, 115, 1148.

5 T. Grösser, M. Prato, V. Lucchini, A. Hirsch and F. Wudl, Angew. Chem., 1995, 107, 1462; Angew. Chem., Int. Ed. Engl., 1995, 34, 1343.

6 M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith and D. W. H. Rankin, J. Chem. Soc., Chem. Commun., 1994, 1364.
7 M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith, J. R. A. Millar and A. T. Taylor, Tetrahedron Lett., 1994, 35, 9067.
8 T. Ishida, K. Tanaka and T. Nogami, Chem. Lett., 1994, 561.
9 C. J. Hawker, K. L. Wooley and J. M. J. Frechet, J. Chem. Soc., Chem. Commun., 1994, 925.
10 M. Yan, S. X. Cai and J. F. W. Keana, J. Org. Chem., 1994, 59, 5951.

11 J. Averdung, H. Luftmann, J. Mattay, K.-U. Claus and W. Abraham, Tetrahedron Lett., 1995, 36, 2543.
12 L.-L. Shiu, K.-M. Chien, T.-Y. Liu, T.-I. Lin, G.-R. Her and T.-Y. Luh, J. Chem. Soc., Chem. Commun., 1995, 1159.

13 M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith, J. R. A. Millar, J. A. S. Parkinson, D. W. H. Rankin and A. T. Taylor, J. Chem. Soc., Chem. Commun., 1995, 887.
14 M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith, J. R. A. Millar and A. T. Taylor, J. Chem. Soc., Chem. Commun., 1995, 885.

